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Abstract

This review describes recent selected HPLC/MS methods for the determination of urinary 

mercapturates that are useful as non-invasive biomarkers in characterizing human exposure to 

electrophilic industrial chemicals in occupational and environmental studies. High performance 

liquid chromatography/mass spectrometry is a sensitive and specific method for analysis of small 

molecules found in biological fluids. In this review, recent selected mercapturate quantification 

methods are summarized and specific cases are presented. The biological formation of 

mercapturates is introduced and their use indicators of metabolic processing of reactive toxicants 

is discussed, as well as future trends and limitations in this area of research.
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Introduction

The measurement of urinary mercapturic acids (mercapturates) is important in 

characterizing human exposure to occupational and environmental toxicants. Toxicant 

concentrations found in the surrounding environment often do not correlate to an 

individual’s internal dose. Estimates based on models may not be accurate due to variations 

in toxicant absorption and metabolism in exposed individuals (De Rooij et al., 1998). 

Determination of urinary mercapturates, which are the products of toxicant metabolism, 
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provide useful biomarkers of individual toxicant absorption and internal dose (Vanwelie et 

al., 1992). The use of mercapturates as biomarkers of toxic occupational and environmental 

exposure has been extensively reviewed (De Rooij et al., 1998; Vanwelie et al., 1992) and a 

survey of HPLC separation and mass spectrometry techniques to quantitate these biomarkers 

has been undertaken in this review.

Mercapturate formation begins when glutathione (GSH), an endogenous tripeptide, reacts to 

inactivate an electrophilic toxicant or reactive toxicant metabolite either spontaneously or by 

catalysis with glutathione transferase in the liver and in other organs (Figure 1). Next 

glutamyl and glycine moieties are enzymatically removed to form a cysteine conjugate. This 

conjugate is, in turn, N-acetylated to form what is generally a toxicant-specific mercapturate 

(Perbellini et al., 2002). The initial reaction between endogenous GSH and an electrophilic 

moiety on a compound is considered as a detoxification step, and prevents reaction of the 

electrophilic metabolite with cellular components such as proteins, lipids or DNA. The final 

N-acetylation reaction increases the polarity and hydrophilicity of the metabolite, making it 

more water soluble and allowing for urinary excretion and elimination (De Rooij et al., 

1998; Vanwelie et al., 1992).

Mercapturate formation from a reactive toxicant is often complex and formation of multiple 

mercapturate products is possible. Urinary mercapturate determination provides a non-

invasive tool to investigate up-stream toxicant activation. Generally, investigations of 

toxicant metabolism are more easily done in experimental animals. However, differences in 

toxicant metabolism between species, especially those between the rodents generally used 

and that of humans are often significant. Identification and quantification of the 

mercapturate products of reactive metabolites can demonstrate differences in toxicant 

activation and detoxification between species. An understanding of these differences in 

toxicant activation is necessary for accurate risk analysis, especially when data from human 

volunteer or occupational studies are limited.

In the interest of brevity, the mercapturate names shown in Table 1 and used throughout this 

review are truncated from the systematic name of the S-conjugated electrophilic group 

except in the cases of acrylamide and the triazine and chloroacetamide herbicide derived 

mercapturates. Thus the systematic name for the mercapturate of benzene, N-acetyl-S-

(phenyl)-L-cysteine is shortened to phenyl mercapturate. The names and abbreviations used 

for mercapturates vary throughout the current literature, and are generally derived from the 

S-conjugated electrophilic group. The abbreviations used in this review, as they appear in the 

cited methods, are listed in Table 1 by parent compound.

This review describes selected HPLC-MS methods for determination of mercapturates as 

biomarkers of human exposure to industrial chemicals for use in occupational and 

environmental studies. Mercapturates are the detoxification products of a wide range of 

heterogenous electrophilic compounds (Table 1) and no single analytical approach for 

development of a method for a new specific mercapturate can be recommended. 

Alternatively, this work is a survey of the multiple analytical approaches described in 

recently published HPLC/MS mercapturate determinations.
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The current review focuses on HPLC/MS determination of a broad range of mercapturates. 

In 2002, Perbellini reviewed methods for determining mercapturates in biological exposure 

monitoring. The scope of that review included gas chromatographic (GC), and high-

performance liquid chromatographic (HPLC) methods, and it was limited to single 

mercapturates of benzene, toluene and xylene, and the detection of two of the mercapturate 

products of 1,3-butadiene and of trimethylbenzene (Perbellini et al., 2002). In this review, 

selected representative mercapturate methods are summarized in tabular format and 

highlights of the sample preparation and chromatography techniques used in these methods 

are briefly described. An overview of mercapturates as useful indicators of toxicant 

metabolism is presented. Mercapturates as specific indicators of toxicant exposure, 

metabolic activation and as tools to investigate toxicant metabolism and elimination are 

considered.

Tabular summaries of selected methods

Tables 2 and 3 summarize selected HPLC-MS methods reported for the detection and 

quantification of various mercapturates used in occupational and environmental studies. The 

terminology and abbreviations appearing in these tables indicate sample preparation 

techniques, chromatographic conditions, and mass spectrometry detection modes reported 

for these methods, and are explained in more detail in the following sections of this review.

Sample preparation techniques

Successful determination of mercapturates by HPLC/MS requires separation of analyte 

mercapturates from interfering components found in urine. Proteins, numerous metabolites, 

salts and other components that make up the urinary sample matrix interfere with the 

sensitive and specific detection of the target mercapturates. Salts may alter the intensity of 

the analyte signal causing ion suppression or ion enhancement. Unrelated metabolites having 

a similar structure may co-elute from the chromatographic column with the target 

mercapturate. The necessary removal of these interferences make sample preparation as 

critical to success as any other part of the analysis. A variety of sample preparation 

techniques have been applied in the methods reviewed. The simplest is dilution and filtration 

through 0.2 µm pore cellulose medium followed by direct injection (Yan et al., 2010). Initial 

acidification of urine is common to some sample preparation procedures, and in S-

phenylmercapturic acid analysis samples were so treated (Maestri et al., 2005, Paci et al., 

2007, Sterz et al., 2010). Other techniques use sample concentration with re-suspension in 

methanol or acetonitrile, or protein precipitation by acidification and centrifugation prior to 

analysis (Wu et al., 2012; Sterz et al., 2012; Sohn et al., 2005; Alwis et al., 2012). Most 

methods use a form of solid phase extraction (SPE) for sample preparation and clean-up. In 

SPE urine is applied to chromatographic medium, and is pulled through the medium under 

vacuum pressure. Target mercapturates are captured in the solid medium, and several 

volumes of solvent are used to remove sample matrix components. Concentrated and 

purified analytes then are washed free from the medium with elution buffer or organic 

solvent for analysis. In simple manual SPE techniques, medium in syringes, disks or 

cartridges are used to extract 1-5 ml of urine.
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Various SPE media are used to extract and concentrate target mercapturates from the urinary 

matrix: reversed phase (RP) (Li et al., 2005; Kellert et al., 2006; Kopp et al., 2008), reversed 

phase-strong anion exchange (RP-SAX) (Melikian et al., 1999), or restricted access medium 

(RAM) phase online trap cartridges (Hou et al., 2012; Schettgen et al., 2008a). Restricted 

access media are specialized chromatographic phases that combine size-exclusion with other 

retention mechanisms. Internal surface-reversed phase RAM combines silica gel particles 

having pores lined with reversed-phase C18, C8, or C4 alkane chains to retain small analyte 

molecules with an outer hydrophilic surface such as methyl cellulose.

Sample preparation is often the rate-limiting step in most bioassay methods. Automated 

sample preparation has become popular and two forms using SPE media have come into 

common use (Varma et al., 2010). Popular 96-multi-well sample plate format has been 

adapted to high-throughput SPE (Mallet et al., 2003). Strong anion exchange medium in this 

format was used to increase extraction throughput in analyses of benzene and toluene 

mercapturates for studies of benzene exposure in smokers (Li et al., 2005) and gas station 

workers (Barbieri et al., 2004) . Recently, Kuklenyik described a 96-well plate sample 

extraction and sample handling technique for analysis of four atrazine mercapturates for 

non-occupational exposure studies (Kuklenyik et al., 2012). The authors describe rapid 

optimization of sample extraction parameters, selecting between four extraction eluate 

compositions to increase analyte stability and maximize MS/MS signal intensity. Following 

extract elution into 2 µL square wells, further extract transfer and handling were eliminated 

by evaporation of extracts under nitrogen in the sample wells. Evaporated extracts were 

stored up to four days without sample degradation before reconstitution immediately before 

analysis. This format may be adapted to online analysis when high-throughput and the speed 

of fully automated analysis are necessary.

In a second form of high-throughput SPE, larger volumes of urine and high numbers of 

samples may be rapidly extracted using online sample extraction with column switching. 

Urine was passed through a trap linked to the chromatographic column using an online 

multiple valve system (Li et al., 2005; Kellert et al., 2006; Kopp et al., 2008; Hou et al., 

2012; Schettgen et al., 2008a). In this technique, target mercapturate analytes are retained in 

the trap; when valve positions are switched, urinary proteins and salts are washed away to 

waste. A final switching of valves with a change to elution buffer carries analytes from the 

trap to the HPLC column for separation. Online SPE extraction using column switching has 

grown in popularity to create automated analyses that decrease overall analysis time by a 

substantial reduction in sample preparation steps. This trend may be expected to continue in 

the future as better automated HPLC-MS/MS systems become commercially available. 

Kuklenyik has described online SPE-LC-MS/MS method design and optimization by 

presenting three example applications including a determination of two mercapturates of 

atrazine (Kuklenyik et al., 2011). Online SPE-LC-MS/MS has been used extensively by 

Schettgen and collaborators (Reska et al., 2010; Schettgen et al., 2012; Schettgen et al., 

2008a; Schettgen et al., 2009) in simultaneous determinations of biomarker mercapturates of 

aromatic compounds and volatile alkylating agents. Here rapid automated sample extraction 

and µg/L sensitivity are combined in methods for occupational and environmental exposure 

assessment to tobacco smoke and urban air pollutants in the general populations.
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Liquid Chromatography

Reversed-phase

Mercapturate metabolite analysis methods often use reversed-phase (RP) columns 

containing a non-polar stationary phase consisting of alkane chains (i.e. C18, C8 or C4). 

Commonly used mobile phases for tandem MS analysis contain volatile acids or buffers 

such as formic acid (HCOOH), acetatic acid (CH3COOH), ammonium formate 

(NH4COOH), or ammonium acetate (NH4CH3COOH). Organic modifiers such as methanol 

(MeOH) and acetonitrile (ACN) are typically used with either isocratic or gradient 

conditions for analyte elution. RP chromatography is common with ESI-MS, but has the 

major limitation in the lack of retention of highly hydrophilic, ionic or polar molecules on 

the stationary phase. Mixed mode separation has also been reported in the literature. 

Kotapati combined RP and weak anionic exchange to determine THBMA, a highly polar 

mercapturate of 1,3-butadiene (Kotapati et al., 2011).

Ultra-high performance liquid chromatography

Ongoing improvements to increase the speed and efficiency of separations are related to 

column technology and instrumentation. Ultra-high performance liquid chromatography 

(UHPLC) utilizes shorter columns, 3-5 cm long, and reduced particle sizes, smaller than 

2µm. Shorter columns result in faster analysis times, and shorter equilibration time. Reduced 

particle size decreases analyte peak dispersion, thus enhancing peak resolution. Sub-2µm 

particles produce sharper peaks while decreasing sample loading over conventional HPLC. 

These improvements in column efficiency and linear velocity can be expected to increase the 

number of theoretical plates (Varma et al., 2010). This in turn may increase sensitivity by 

increasing the signal to noise ratio of the detector. The mass spectrometer is a mass sensitive 

detector, not concentration dependent such as in ultraviolet detection; therefore, UHPLC 

may in some cases match or exceed the sensitivity of standard chromatographic systems.

The advantages of sub-2µm particles working at higher pressures were reviewed (Nguyen & 

Schug 2008). However, very high pressure is required to push mobile phase through a 

column packed with smaller diameter particles. UHPLC has come into use for biomarker 

monitoring owing to the fact that most HPLC pump manufacturers are offering pumping 

systems capable of maintaining the high back pressure levels required for the technique. 

Standard HPLC pumping systems have traditionally had maximum pressure levels of 

approximately 6,000 psi (~420 Atmospheres) while UHPLC pumps are designed to handle 

pressures in excess of 15,000 psi (~1,000 Atmospheres). These fundamental aspects and 

practical requirements of UHPLC have been reviewed (Wu & Clausen, 2007). Application 

of UHPLC specifically to bioanalysis has been reviewed (Varma et al., 2010). UHPLC 

analysis of structurally similar mercapturates found in the urine of smokers (Wu et al., 2012, 

Pluym et al., 2015) and multiple mercapturates in workers exposed to multiple volatile 

organic chemicals (Alwis et al., 2012) will be considered in later sections of this review.

Hydrophilic interaction chromatography

Biomonitoring of worker exposure to electrophilic alkylating agents that are carcinogenic, 

such as acrylamide (International Agency for Research on Cancer, 1994), acrylonitrile 
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(International Agency for Research on Cancer, 1999), styrene (International Agency for 

Research on Cancer, 1994) and 1,3-butadiene (International Agency for Research on Cancer, 

2008), is important in industrial medicine (De Rooij et al., 1998; Vanwelie et al., 1992). The 

mercapturates of these compounds are polar, especially those containing hydroxylalkyl 

groups. These hydroxyalkyl mercapturates (HAMAs) are difficult to retain on RP columns 

without using highly aqueous conditions and non-volatile mobile phase components that are 

not compatible with mass spectrometric detection. Ordinarily normal phase (NP) would be 

used to satisfy the separation conditions of highly polar analytes (Snyder et al., 2010), but 

NP is not easily made compatible with electrospray ionization MS (ESI-MS). Hydrophilic 

interaction chromatography (HILIC) has been used to overcome the mismatch between NP 

like chromatography and ESI-MS. Typically HILIC mobile phases using high organic 

content (> 80%) are ideal for ESI-MS analysis, and may enhance ES-MS response (Nguyen 

& Schug, 2008). HILIC utilizes a polar stationary phase with an aqueous/polar organic 

solvent mobile phase, where water is introduced to play the role of a stronger eluting 

solvent. In HILIC separations, mercapturates are separated from urinary matrix by a 

partitioning mechanism between a water-enriched layer associated with a polar stationary 

phase and solvent containing ammonium formate or ammonium acetate and 5-15% water to 

maintain the water-enriched layer on the stationary phase. Since retention increases with 

hydrophilicity and polarity of the analyte, elution is driven by increasing water content in the 

mobile phase which is composed of high organic content, usually consisting of acetonitrile 

or alternatively, methanol. The HILIC mechanism has been discussed in great detail 

(Hemstrom & Irgum, 2006) and the advantages of HILIC when combined with ESI-MS 

detection have been reviewed (Nguyen & Schug, 2008). The application of HILIC in 

quantitative bioanalysis of compounds of pharmaceutical interest has been described (Jian et 

al., 2010).

HILIC columns have been reported for the determination of mercapturates having greater 

molecular polarity (Kopp et al., 2008; Yan et al., 2010; Sterz et al., 2012; Eckert et al., 

2010), and this technique has become an important recent trend in mercapturate analysis. 

HILIC-ESI-MS appears to be a useful technique, and has been used as a complement to 

RPLC-ESI-MS studies by Dekant and collaborators (Kellert et al., 2006; Kopp et al., 2008) 

in complementary studies of acrylamide and glycidamide mercapturates and other polar 

acrylamide metabolites (Table 2). Kopp used HILIC-ESI-MS to achieve baseline separation 

between two acrylamide metabolites, AAMA-sulfoxide and GAMA. Failure to resolve these 

two metabolites could result in over estimation of urinary GAMA levels, and hence an over 

estimation of the potential risk of AA exposure in humans. A direct-injection method (Yan et 

al., 2010) was developed using HILIC to eliminate sample extraction used in earlier methods 

(Mascher et al., 2001; Carmella et al., 2007) to quantitate the acrolein mercapturate 3-

HPMA. The method specificity, linearity, precision and accuracy met required FDA criteria 

(US Department of Health and Human Services, Food and Drug Administration, 2001). 

HILIC chromatography has also been used to simultaneously determine HAMAs of multiple 

alkylating agents in a single chromatographic run (Sterz et al., 2012; Eckert et al., 2010). 

These studies are considered later in this review describing simultaneous determination of 

mercapturates in a single chromatographic analysis.
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Mass spectrometry modes of detection

In tandem HPLC/MS analysis, after target analytes are separated by chromatography, they 

are introduced into the mass spectrometer for analysis. This is done at the LC/MS interface 

where the chromatographic eluate is vaporized and the analyte molecules are ionized for 

mass selection and detection in the mass analyzer. The ion sources used in the methods 

reviewed here are electrospray ionization (ESI) and atmospheric chemical ionization 

(APCI). These ionization techniques allow easy and robust interfacing of HPLC to tandem 

mass spectrometry (Zimmer, 2003).

In ESI, the liquid eluent from the HPLC system is passed through a small capillary needle 

held at a high electrical potential (2000 – 5000 V). This results in electrostatic nebulization 

of the liquid into droplets. The resultant droplets contain a net charge having the same 

polarity as the voltage placed on the needle. During desolvation of the droplets, the electric 

field increases in strength at the diminishing droplet surface and leads to the ejection of 

charged analyte ions upon final evaporation. The ESI source is a gentle and “soft” ionization 

technique and does not cause significant thermal degradation as that caused by other ion 

sources. ESI is able to ionize extremely polar/non-volatile molecules, which may be more 

difficult for APCI; thus, it is generally considered more versatile than APCI. ESI also has a 

high level and efficiency of ionization, which leads to a higher level of detector sensitivity. 

ESI sources generally require water and acidic pH of the mobile phase to aid in ionization.

In APCI , the liquid eluent from the HPLC is heated and aerosolized by means of a nebulizer 

and a high flow of nitrogen gas. The aerosol is subjected to a corona discharge to form ions 

in a three step process. First, a corona discharge ionizes the nebulizing gas to form primary 

ions. These primary ions react immediately with the solvent molecules of the mobile phase 

forming reagent ions. Finally, the reagent ions react with the analyte molecules to form [M + 

H]+ in positive-ion mode or [M – H]− in negative-ion mode. In APCI, this cascade of 

ionization reactions occur in the gas phase, unlike ion formation from the liquid phase as in 

ESI. The APCI source allows for improved analysis of non-polar and medium polar volatile 

compounds. APCI is generally regarded as a more robust ionization method than ESI, and it 

is less susceptible to signal suppression resulting from co-eluting matrix components 

(Ackermann, et al., 2002, Korfmacher 2005, Matuszewski et al., 1998). APCI also requires 

little or no buffers in aqueous mobile phases to assist in ionization.

The basic function of a mass spectrometer is to measure the mass-to-charge ratios (m/z) of 

analyte ions. Mass spectrometers have various designs which have been reviewed elsewhere 

in the literature (Goddlett et al., 2001). Although mass spectrometers are used in qualitative 

identification of compounds, the monitoring of specific ions for quantitative determination is 

the focus of this discussion. For the mercapturate analyses surveyed for this review, single 

quadrupole (SQ) mass analyzers and tandem mass spectrometers using the triple quadrupole 

(QQQ) design dominate what is reported in the literature (Tables 2-3). The mass analyzer of 

the spectrometer separates the formed precursor ions. Analysis of analytes using single 

quadrupole instruments are performed in Selected Ion Monitoring (SIM) mode in which 

only a selected m/z value is detected in the analysis. The majority of the methods found in 

this review use tandem transmission quadrupole instruments (MS/MS). In the case of 
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multiple mercapturic acid metabolite analysis, all use the QQQ where precursor ions are 

selected in the first quadrupole, and allowed to pass into a collision chamber for collision-

induced dissociation fragmentation into product ions. Transmitted from the collision 

chamber, fragmentation product ions will be separated by the third quadrupole for detection. 

Tandem mass spectrometry provides the greatest level of sensitivity and specificity for the 

analysis method. This allows for detection of analytes in the presence of biological sample 

matrix components that would otherwise interfere with ultraviolet or fluorescence detection 

(B'Hymer & Cheever, 2010). For this reason, tandem MS detection is considered the method 

of choice for quantitation of metabolites in biological fluids (Matuszewski et al., 2003). The 

high sensitivity of the MS/MS detection is of particular importance in investigating low-level 

pollutant exposure in general populations in whom urinary mercapturates may be present in 

µg/L or ng/L levels.

Signal suppression is a well known problem in HPLC-MS/MS analysis. The most common 

problem is that of ion suppression; the problem of ion enhancement, although rare, may also 

be encountered (Matuszewski et al., 1998). Both manifestations can be caused by sample 

matrix interferences from components within the sample. The mechanism of matrix induced 

ion suppression or enhancement is not fully understood (Kebarle & Tang, 1993, King el al., 

2000). It is thought to originate from the competition between the target analyte and a co-

eluting, undetected sample component reacting with the primary ions formed in the HPLC-

MS/MS. This type of matrix effect may greatly change the reproducibility or the quantitation 

accuracy of a particular analyte.

Compensation for signal suppression by the use of an internal standard is a common strategy 

used in HPLC-MS/MS. The use of an internal standard will only be effective if the internal 

standard is subject to the same type of matrix effect as the analyte and must essentially 

chromatographically co-elute with the target analyte. Thus, ideally, the best internal standard 

is the stable isotopically labeled target analyte or a chemically similar homolog of the target 

analyte. For example, deuterated or carbon-13 analogues of the target analytes are typically 

used as internal standards. The internal standard is added to both the initial sample and 

spiked sample solutions before analysis. Calibration plots using analyte/internal standard 

peak-area ratios generated from the chromatograms, rather than the peak area of the target 

analyte alone, are then used to calculate accurate results. At the time of this writing, both 

analytical and isotopically labeled standards for the mercapturates reviewed in this work 

(Table 1) are commercially available or available through custom synthesis. Seven 

commercial sources of mercapturic acids are listed by Alwis et al., and many others are 

available (Alwis et al., 2012). This was not the case in several earlier published methods 

reviewed here when researchers used general methods of laboratory synthesis to produce the 

required mercapturate standards (Van Bladeren et al., 1980).

Mercapturates as indicators of toxicant metabolism

The metabolism of occupational and environmental toxicants in exposed individuals varies 

with toxicant dose, absorption and enzyme polymorphisms (De Rooji et al., 1998; Vanwelie 

et al., 1992). The excretion of mercapturates subsequently varies and their quantitation offers 

information about individual occupational and environmental exposure, internal dose and 
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differences in metabolism. Metabolic activation of an electrophilic compound can produce 

multiple metabolites many of which may react with GSH to form a mercapturate. The 

determination of one or more mercapturate products of a parent compound may be required 

for informative biomonitoring (De Rooji et al., 1998; Vanwelie et al., 1992). The metabolism 

of several environmental toxicants and the formation of their mercapturates will be described 

briefly: these include acrylamide, acrylonitrile, 1,3 butadiene, benzene, toluene, styrene, 1-

bromopropane and polycyclic aromatic hydrocarbons. These examples demonstrate broadly 

how mercapturate determination is used in exposure biomonitoring and in the investigation 

of toxicant metabolism. Toxicant metabolism may include biological activation, 

detoxification and elimination of mutagenic or carcinogenic toxicants.

Acrylamide

Acrylamide (AA) is an extensively used industrial chemical intermediate with many 

applications such as a polymerizing agent in grouts or other acrylamide polymers used in 

waste water treatment, soil stabilization and paper manufacture (Friedman, 2003). Low 

levels of acrylamide are present in baked, fired, and roasted foods, and mainstream and 

sidestream tobacco smoke are common sources of human exposure (Tornqvist, 2005). Both 

AA and its oxidative metabolite glycidamide (GA) contain electrophilic groups capable of 

binding to cellular proteins, a property associated with acrylamide neurotoxicity. 

Furthermore, GA, a reactive epoxide, binds to nucleophilic nucleic acids to form adducts 

with cellular DNA; this mechanism is regarded as the cause of AA carcinogenicity 

(International Agency for Research on Cancer, 1994). Thus, in human biomonitoring and 

health risk assessments of AA elimination routes, the metabolism and conversion to GA 

must be considered. AA may be detoxified by direct conjugation with GSH to form AAMA, 

Figure 2. GSH conjugation of GA, an epoxide, leads to formation of two isomeric 

mercapturates GAMA2 and GAMA3. Quantification of AAMA is a measure of direct 

detoxification of AA, while determination of GAMA2 and GAMA3 measures AA 

bioactivation to a direct-acting mutagen. HPLC/MS analysis has been adapted to these 

purposes, and five examples of this are listed in Table 2 (B’Hymer & Cheever, 2007; Li et 

al., 2005; Kellert et al., 2006; Kopp et al. 2008; Zhang et al., 2015). A method for 

simultaneous determination of urinary AA and the mercapturate, AAMA, was developed for 

occupational exposure monitoring (B'Hymer & Cheever, 2007). As indicated previously, AA 

exposure is not limited to the industrial environment. To examine the health risk posed by 

AA in food, methods for simultaneous quantitation of AAMA and of GA isoform 

mercapturates, GAMA2 and GAMA3, have been developed and reported in the literature 

during epidemiologic studies for dietary AA conversion to GA in non-occupationally 

exposed populations (Kellert et al., 2006; Kopp et al., 2008; Zhang et al., 2015).

Acrylonitrile

Acrylonitrile (AN) a widely-used industrial chemical and component in tobacco smoke, is a 

thoroughly characterized chemical exposure hazard (International Agency for Research on 

Cancer, 1999). Acrylonitrile is not directly carcinogenic, but like acrylamide, is potentially 

carcinogenic through an oxidative metabolite, cyanoethylene-epoxide (CEO) (Hou et al., 

2012; Wu et al., 2012; Schettgen et al., 2012). If this epoxide is not detoxified by GSH 
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conjugation or other mechanism, it can react with nucleophilic sites in DNA and function as 

direct-acting mutagens. AN is detoxified by direct GSH conjugation to form 2-cyanoethyl 

mercapturate (CEMA). CEO is detoxified and eliminated as 2-hydroxyethyl mercapturate 

(HEMA) or 1-cyano-2-hydroxyethylmercapturate (CHEMA), Figure 3. Taken together 

CEMA, HEMA and CHEMA quantitation represent conjugative detoxification of AN, while 

HEMA and CHEMA quantitation is a measure of metabolic activation of AN to the reactive 

epoxide, CEO.

Aromatic Solvents

Benzene and toluene are aromatic hydrocarbons used as solvents in industrial chemicals, as 

common additives in fuels and are components in cigarette smoke. Benzene is a human 

cancer hazard (International Agency for Research on Cancer, 1982), and the hematotoxicity 

of benzene has been elucidated during the past few decades (Arnold et al., 2013). A non-

carcinogen toluene (International Agency for Research on Cancer, 1989) is often used as a 

less toxic substitute for benzene in inks, dyes, thinners, detergents and in chemical and drug 

preparation (American Conference of Governmental Industrial Hygienists, 2014) . 

Historically, biological monitoring for both chemicals was done using their hydrolytic 

detoxification products. In the case of benzene, four metabolites, phenol, catechol, 

hydroquinone and trans, trans-muconic acid (ttMA), have been investigated and used as 

biomarkers (American Conference of Governmental Industrial Hygienists, 2014). However, 

their urinary levels are influenced by the metabolism of gut flora, diet, and medication use, 

and smoking (Arnold et al., 2013). Similarly, the metabolism of toluene produces two 

hydrolytic metabolites, hippuric acid and o-cresol, that are influenced by diet and are not 

specific for occupational exposure (Cosnier et al., 2013). However, GSH detoxification of 

both these solvents produces corresponding mercapturates which may be used as biomarkers 

of exposure. Benzene metabolism forms phenylmercapturic acid (PMA) and toluene forms 

benzylmercapturic acid (BMA). Because a biomarker of exposure should be specific for 

chemical exposure, PMA and BMA that are free of dietary and endogenous interferences are 

preferred biomarkers for benzene and toluene exposure (Arnold et al., 2013; Cosnier et al., 

2013). However, both are influenced by smoking. Therefore, in biomonitoring, study 

subjects are asked to refrain from smoking for 2 h before urine collection (Lovreglio et al., 

2010).

In addition to toluene’s side chain glutathione metabolite BMA, 3 isomeric 

toluylmercapturates resulting from the arene oxidation of toluene’s aromatic ring may be 

found in rat urine (Cosnier et al., 2012). One of these, S-p-toluylmercapturate, was 

demonstrated in urine from toluene exposed workers, and has been proposed as a biomarkers 

of exposure (Angerer et al., 1998). Similarly, arene oxidation of the aromatic ring in xylene 

and ethylbenzene lead to the formation of isomeric mercapturates (Gonzalez-Reche et al., 

2003; Cossec et al., 2013).

1-Bromopropane

1-Bromopropane (1-BP) is an industrial solvent used as a substitute for chlorofluorocarbons 

or 1,1,1-trichloroethane in metal electronics degreasing, in adhesives, in aerosol solvents, or 
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in place of trichloroethylene or perchloroethylene in dry cleaning (National Institute for 

Occupational Safety & Health, 2013). Worker case studies report that 1-BP exposure causes 

central and peripheral neurological disorders and changes in cellular blood components in 

workers including evidence of dose-dependent neurological and hematological changes in 

women working in 1-BP production plants (Sclar, 1999; Ichihara, 2005; Raymond & Ford 

2007; Majersik et al., 2007; Morbidity Mortality Weekly Report, 2008; Li et al., 2010). 

Available epidemiologic studies have not reported cancer in humans exposed to 1-BP. 

However, based on recent animal studies, the National Toxicology Program concluded 1-BP 

is reasonably anticipated to be a human carcinogen. In these studies, the molecular 

alterations observed in experimental rodents that are associated with oxidative metabolism, 

genotoxicity and carcinogenesis are relevant to possible mechanisms of carcinogenicity in 

humans (US Department of Health and Human Services Public Health Service National 

Toxicology Program, 2014). At the time of this writing, there are no standardized biological 

monitoring techniques for 1-BP. To compare and evaluate the suitability of several 1-BP 

metabolites as biomarkers of occupational exposure, recent animal exposure and human 

exposure studies are considered.

The metabolism of 1-BP is complex (Barnsley et al., 1966; Sklan & Barnsley, 1968; Baines 

et al., 1977; Jones & Welsh, 1979; Tachizawa et al., 1982). In rats, some absorbed 1-BP is 

metabolized rapidly through direct conjugation with GSH to form n-propylmercapturate 

with the release of free bromide (Br−) ions (Jones & Welsh, 1979). Mercapturate formation, 

investigated most completely in rodents, produces four mercapturates; n-

propylmercapturate, and three more derived from C2 or C3 oxidations of 1-BP by 

cytochrome P450 2E1 monooxygenase (CYP2E1). Oxidative metabolites 1-bromo-2-

propanol and bromoacetone (Barnsley et al., 1966) and 3-bromopropionic acid (Jones and 

Walsh, 1979) are, in turn, conjugated with GSH to form 2-hydroxypropyl-mercapturate, 2-

oxopropylmercapturate, and 2-carboxyethylmercapturate, respectively (Figure 4).

Human exposure studies investigated urinary bromide level (Br−) as a possible biomarker of 

1-BP exposure using gas chromatography with electron capture detection (Kawai et al., 

2001; Kawai et al., 2002; Zhang et al., 2001). The correlation between urinary Br− and 

airborne 1-BP was significant, but background urinary Br− was substantial (~8 mg/l). 

Further investigation found that intake of fruit, sea-food, some soft drinks, and use of 

brominated vegetable oils influenced urinary Br− levels (Kawai et al., 2002; Zhang et al., 

2001, Horowitz 1997). This lack of specificity limits the use of urinary Br− levels for 

estimating human occupational exposure only when dietary or other bromide intake can be 

considered. Alternatively, other metabolites identified in rodents are specific products of 1-

BP oxidation by CYP2E1; 1-bromo-2-propanol, bromoacetone and 3-bromopropionic acid. 

Their mercapturates represent specific biomarkers that are free of dietary or other non-

occupational interferences (Pombrio et al., 2001; Ichihara et al., 2001; Valentine et al., 

2007). Urinary n-propylmercapturate levels were measured using GC/MS in post-shift urine 

samples of 47 workers in a 1-BP production plant. Urinary n-propylmercapturate levels 

increased with increasing 1-BP exposure in these workers (Valentine et al., 2007). 

Investigation of this mercapturate and one oxidative metabolite precursor, 3-bromopropionic 

acid (3-BPA), as potential biomarkers of 1-BP exposure in highly exposed workers was 

performed in this laboratory (Mathias et al., 2012). HPLC/MS was used to quantify urinary 

Mathias and B’Hymer Page 11

Biomarkers. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mercapturates of 1-BP (Cheever et al., 2009) where the direct GSH conjugate, n-

propylmercapturate was predominate in urine specimens taken from the most heavily 

exposed workers. The same urine samples when analyzed for 3-BPA using GC/MS 

(B'Hymer & Cheever, 2004) contained no 3-BPA. This result suggests that the predominate 

n-propylmercapturate, the product of direct conjugate of 1-BP with GSH, is a major 

detoxification route in highly exposed workers, and that oxidative metabolism of 1-BP is not 

a major metabolic pathway in humans. Studies of human metabolism of 1-BP are limited to 

analysis of n-propylmercapturate in worker urine (Ichihara et al., 2001; Valentine et al., 

2007), and provide no explanation for these results. However studies of oxidative 

metabolism of 1-BP by CYP2E1 in rodents by Garner demonstrated that 1-BP metabolism 

becomes saturated in highly exposed rats, but not in mice (Garner et al., 2006). In rats, 1-BP 

oxidative metabolism by CYP2E1 is dose-dependent and becomes blocked with increased 

toxicant dose. As a result n-propylmercapturate becomes a predominate urinary 

mercapturate. When 1-aminobenzotriazole, an inhibitor of oxidative metabolism was given 

to rats, all oxidative metabolites including 3-BPA, were eliminated from their urine leaving 

only n-propylmercapturate as the predominate urinary mercapturate, mirroring the effect of 

metabolite saturation of CYP2E1 activity that likely occurs in high 1-BP exposure in 

humans. These results suggest a difference between human and rat metabolism of 1-BP and 

that found in mice. In these studies urinary mercapturate identification was used to 

investigate species differences in toxicant metabolism, and to deduce possible changes in the 

activity of up-stream metabolic pathways when the conditions of toxicant exposure in 

research animals or workers are changed. In summary, the mercapturates of 1-BP are 

specific for 1-BP exposure while bromide ion levels are not. Oxidative metabolites of 1-BP, 

3-BPA or others are specific, but may not be produced during high exposures. Given these 

considerations, n-propylmercapturate, the product of direct GSH conjugation of 1-BP 

appears to be the best candidate biomarker of 1-BP exposure.

1,3-butadiene

The genotoxicity of butadiene (BD) is attributed to its three epoxide metabolites 

epoxybutene (EB), diepoxybutane (DEB) and epoxybutanediol (EBD), each of which is able 

to react with cellular protein such as hemoglobin, or with DNA as direct acting carcinogens 

(International Agency for Research on Cancer, 2008). Assay of their detoxification 

mercapturate products are useful to measure BD exposure, epoxide formation and 

detoxification, and may then be used to estimate genotoxic risk of exposure (Figure 5). 

Occupational exposure studies of BD monomer and rubber workers have used the EB 

mercapturate metabolite, 3,4-dihydroxybutylmercapturate (DHBMA) alone (Kelsey et al., 

1995; Ward et al., 1996; Hallberg et al., 1997; Ammenheuser et al., 2001) or both EB 

mercapturates, DHBMA and 1-hydroxymethyl-2-propenylmercapturate (MHBMA) in 

rubber workers (Hayes et al., 2000; Fustinoni et al., 2004; Albertini et al., 2003), smokers 

(Urban et al., 2003), urban traffic workers (Sapkota et al., 2006), and in an unexposed 

population (Schettgen et al., 2009). The ratio of these mercapturates DHBMA/(DHBMA + 

MHBMA) serves as a relative comparison of hydrolytic detoxification vs. direct GSH 

conjugative detoxification of EB (Urban et al., 2003; Kirman et al., 2010b). This ratio was 

used to examine species differences in BD metabolism (van Sittert et al., 2000) An 
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understanding of these differences is necessary for accurate human risk analysis when 

toxicokinetic data based on more easily studied rodent metabolism is used when data from 

human volunteer or occupational exposure studies are limited (Richardson et al., 1999; van 

Sittert et al., 2000, Kirman et al., 2010a).

Alternative metabolism of EB leads to further epoxide formation to produce EDB and DEB. 

Of these EDB is the most abundant BD epoxide metabolite in humans (Swenberg et al., 

2007). Formation of both epoxides has been investigated in exposed workers by 

measurement of their hemoglobin adduct, N-(2,3,4-trihydroxybutyl)-valine (THB-Val) 

(Perez et al., 1997; Hayes et al., 2000; Albertini et al., 2001, 2003; Fustinoni et al., 2002; 

Vacek et al., 2010). This measurement requires a blood specimen, and the analysis is 

technically demanding and expensive. Alternatively, determination of urinary 2,3,4-

trihydroxybutylmercapturate (THBMA), the detoxification mercapturate of both EDB and 

DEB is an indirect measure of BD metabolism to EDB and DEB. THBMA is the most polar 

of the detoxification mercapturates of BD, and is poorly retained on reverse phase media 

typically used in solid phase sample extraction and chromatography of less polar 

mercapturates. Kotapati adapted the method of Eckert using acidic sample extraction 

conditions to neutralize the carboxylate group of THBMA, improving analyte binding to the 

solid phase (Kotapati et al., 2011; Ekert et al., 2010). Chromatography was performed using 

mixed mode reversed phase with weak anionic interaction to separate THBMA from other 

sample components. This method was expanded to include analysis of bis-BDMA, a 

mercapturate of DEB, as well as DHBMA and MHBMA for quantitation of all four 

mercapturates of BD (Kotapati et al., 2014). These recently developed HPLC/MS-MS 

methods for quantitation of urinary THBMA and bis-BDMA represent more cost effective 

biomarkers of EDB and DEB epoxide formation from BD than the currently used analysis of 

THB-Val adducts of hemoglobin.

Styrene

Styrene is an industrial monomer used worldwide in polymers, resins, latex paints and in 

manufactured building materials. The highest exposure potential occurs in open 

manufacturing of reinforced plastics and in hand-lamination workers (Miller et al., 1994). 

Oxidative metabolism of styrene occurs via two pathways both leading to products that 

contribute to its toxicity. Bioactivation may occur through oxidation of styrene’s side chain 

to form styrene-7,8 epoxide (7,8-SO) a recognized animal carcinogen and a possible human 

carcinogen (International Agency for Research on Cancer, 1994). In humans the most 

abundant urinary metabolites, mandelic acid (MDA) and phenylglyoxylic acid (PGA), which 

represent the hydrolytic detoxification of SO, are used currently in occupational 

biomonitoring (American Conference of Governmental Industrial Hygienists, 2014). These 

metabolites are not specific for occupational exposure since trace amounts of styrene occur 

naturally in fruits, vegetables, nuts, beverages and in meats. In addition, styrene exposure 

may occur through tobacco smoke, consumer products and styrene vapor from building 

materials (American Conference of Governmental Industrial Hygienists, 2014). Because 

MDA and PGA are non-specific, occupational exposure must be confirmed by measuring 

styrene in whole blood drawn at the end of the workday (American Conference of 

Governmental Industrial Hygienists, 2014). Alternative detoxification of 7,8-STO by GSH 
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conjugation leads to formation of four isomeric phenylhydroxyethyl mercapturates 

(PHEMAs).

Investigations of styrene mercapturate formation have provided important information about 

the stereochemistry of styrene biotransformation (Figure 6). Oxidation of the side chain of 

styrene forms two stereoisomers of styrene epoxide, (S)7,8-STO and (R)7,8-STO. Each 

epoxide enantiomer when conjugated with GSH at either C7 or C8 of the side chain leads to 

two isomeric mercapturates designated PHEMA MA1 and MA2. GSH conjugation of both 

S- and R- enantiomers yields four possible isomeric PHEMAs, the structures of which are 

shown in Figure 6 (Linhart et al., 1998). The relative proportions of the stereoisomers MA1 

and MA2 was used to investigate the stereoselectivity of GSTM1 conjugation of 7,8-SO 

(Linhart et al., 1998, DePalma et al., 2001, Fustinoni et al., 2008). The most abundant 

stereoisomers R,R-MA1 and S,R-MA2 are derived from the less genotoxic (S)7,8-SO. This 

result suggests stereoselective conjugation of (S)7,8-SO at a less sterically hindered C8 over 

a more hindered C7 (Fustinoni et al., 2008). Formation of these mercapturates is a minor 

detoxification route, representing about 1% of inhaled styrene (Manini et al., 2003), but 

tandem HPLC/MS-MS analysis of these mercapturates offers a sensitive and specific tool for 

styrene biotransformation studies (Manini et al., 2000).

A second minor pathway of styrene bioactivation proceeds via oxidation on the aromatic 

ring to form arene oxides 2,3 and 3,4-styrene oxide (2,3 and 3,4-STO, respectively, Figure 

7). 3,4-STO in turn may form 4-vinylphenol (4-VP), which has been found in the urine of 

workers exposed to styrene (Pfaffli et al., 1981; Haufroid et al., 2002; Manini et al., 2003; 

Watabe et al., 1982). 4-VP is more hepatotoxic and pneumotoxic than styrene and 7,8-STO 

at lower doses in rats and mice (Carlson, 2002; Carlson, 2004). Further studies indicate 4-

VP metabolites including 4-vinyl catechol, -4-(2-oxiranyl)-phenol, and electrophilic 

quinones could contribute to the hepatotoxicity of 4-VP (Carlson, 2004; Carlson, 2011; 

Zhang et al., 2011). Alternatively 2,3- and 3,4-STO may react with GSH to initiate 

formation of three isomeric vinylphenolmercapturates (VPMAs). Of these mercapturates, 4-

VPMA, the product of 3,4-STO conjugation, is the most abundant VPMA isomer (Linhart et 

al., 2010; Linhart et al., 2012). The mercapturate products of 2,3-STO conjugation, 2- and 3-

VPMA were detected only in trace amounts suggesting selective GSH conjugation at C4 of 

3,4-STO over conjugation of 2,3-STO (Linhart et al., 2012). Formation of these 

mercapturates represents activity in a second toxicologically significant pathway of styrene 

activation and biotransformation (Linhart et al., 2012), Table 2). Although determination of 

these styrene mercapturates provides toxicologically relevant information, they are minor 

metabolites and do not reflect absorbed dose as accurately as the currently used biomarkers 

MDA and PGA (De Palma et al., 2001).

The biotransformation of styrene is complex, but the sensitivity and specificity of tandem 

HPLC/MS analysis will make possible complete characterization of styrene metabolites in 

occupational settings (Manini et al., 2000; Manini et al., 2002) and in the low level 

exposures found in the general environment (Reska et al., 2010). Because the mercapturates 

of styrene are minor metabolites, they are not suited for quantitative estimates of internal 

absorbed dose. They are indicators of oxidative activation of styrene and are products of 
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toxicologically relevant pathways of transformation. Their possible use as biomarkers of 

styrene activation and biotransformation awaits further study.

Simultaneous determinations mercapturates in occupational and 

environmental studies

In the past, one of the main technological limitations of mass spectrometers used in HPLC 

analysis has been the rate of data acquisition and the dwell time of monitoring the response 

at specific masses. Detector sampling rates must be rapid enough to obtain a sufficient 

number of data points across the analyte peak (Holland et al., 1983; Varma et al., 2010). 

Low data acquisition rates have been known for many years to lead to poor chromatographic 

peak integration and poor reproducibility of peak area determinations (Holland et al., 1983). 

Rapid data acquisition is necessary in order to minimize chromatographic peak distortion, 

which can be a problem with multiple analyte methods or spectral data collected from 

increasingly narrow chromatographic peaks such as with UHPLC. With improvements in 

data aquisition rate for MS systems, mostly from the advent of much more powerful 

computers, HPLC-MS methods have become more capable of determining multiple 

mercapturate analytes in a single chromatographic analysis. The following sections consider 

simultaneous determinations of the mercapturates of multiple parent compounds in a single 

chromatographic analysis.

Polycyclic aromatic hydrocarbons

The carcinogenicity of benzo(a)pyrene (BP) is associated with diol epoxide formation by 

P450 oxidation in the bay region of this polycyclic aromatic hydrocarbon (PAH). 

Inactivation and detoxification of BP was generally assumed to occur by Glutathione S-

Transferase (GST) catalyzed GSH conjugation of bay region diol epoxides followed by 

further metabolism to urinary mercapturates, Figure 8. Molecular epidemiology and risk 

assessment studies based on this assumption had met only modest success (Upadhyaya et al., 

2006). In investigating possible reasons for this, Hecht and collaborators recognized that the 

expected mercapturate products of GSH conjugation in the bay region of PAHs had never 

been demonstrated in human urine. To reexamine the detoxification of PAHs, Upadhyaya 

developed a method to determine the mercapturates of phenantherene, the simplest of the 

PAHs having a bay region. The method was applied to the urine of 36 smokers. Detectable 

mercapturate were products of conjugation of the “reverse diol epoxides” of phenantherene, 

Phe-O-Nac and Phe-DE-Nac, and not products of GSH conjugation at the bay region 

(Upadhyaya et al., 2006; Hecht et al., 2008). The result was replicated in human hepatocyte 

culture where only trace amounts of mercapturates derived from the bay region of 

phenantherene were detected (Hecht et al., 2009). These results suggested that GST may 

have a substrate preference for GSH conjugation of reverse diol epoxides over those formed 

in the bay region of PAHs (Figure 8). Upadhyaya repeated hepatocyte incubations with 

culture medium containing the activated metabolite of BaP, 7,8-diol-9,10-epoxide (BPDE), 

or with the non-carcinogenic reverse diol epoxide 9,10-diol-7,8-epoxide (revBPDE). The 

majority of mercapturate products, again, were formed by preferential GSH conjugation of 

revBPDE by GST (revBPDE-7Nac). Mercapturate products of conjugation in the bay region 
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of BPDE were detected in only one of ten replicate incubations (Upadhyaya et al., 2010). 

These studies indicate that detoxification of BPDE by GSH conjugation is a minor pathway 

in humans, and that the gene polymorphisms of GST are not an important risk factor in the 

diol epoxide pathway of benzo(a)pyrene carcinogenesis.

Alkylating agents

Schettgen has developed RP simultaneous determinations for the mercapturates of high 

volume production alkylating chemicals acrylamide, acrolein, dimethylformamide, ethylene 

and propylene oxides (Schettgen et al., 2008b) and for acrylonitrile and 1,3-butadiene 

(Schettgen et al., 2009). These methods were applied to spot urine samples collected from 

smokers and non-smokers having no occupational exposure. Both methods were sensitive 

enough to distinguish between smokers and non-smokers and would be suitable for 

determination of background exposures of general populations to industrial emissions and 

polluted urban air.

The mercapturates of many alkylating agents contain highly polar hydroxyalkyl groups and 

are difficult to retain on RP media. To address this difficulty, Eckert et al. (2010) developed a 

HILIC method to determine six hydroxyalkyl mercapturates (HAMA), including the first 

reported determination of 2,3-dihydroxypropyl mercapturate of glycidol (Table 3). In 

agreement with earlier reports (Schettgen et al., 2009; Ding et al., 2009), Eckert reports only 

1 MHBMA peak in urine of smokers. Most recently, Sterz combined UHPLC with HILIC to 

separate 1,3-butadienemercapturate isomers, MHBMA1 and MHBMA2 in human urine 

(Sterz et al., 2012, Table 3). Altogether, further studies are needed to better evaluate 1,3-

butadiene metabolism. Perhaps, as in the complementary studies of acrylamide by Dekant 

and collaborators (Kellert et al., 2006; Kopp et al., 2008), RPLC-ESI-MS/MS and HILIC-

ESI-MS/MS may be used to investigate the isomers of MHBMA, and evaluate their utility as 

biomarkers in occupational exposure, in smokers, and in urban populations.

Urban air pollutants

Simultaneous determination analysis is well suited to investigate complex exposures to 

volatile organic compounds (VOC) in occupational settings, in exposure of urban 

populations to air pollutants, and in cigarette smoke (Schettgen et al., 2008b; Ding et al., 

2009; Scherer et al., 2010; Eckert & Goen, 2014; Zhang et al., 2014; Chiang et al., 2015; Li 

et al., 2015b; Pluym et al., 2015). Sabatini developed a simultaneous determination for the 

mercapturates of benzene, toluene and xylene (BTX) using FDA validation guidelines (US 

Department of Health and Human Services Food and Drug Administration, May 2001) to 

measure BTX co-exposure in traffic warden exposures to automobile exhaust and urban air 

pollutants examining the urine of men and women, including smokers and non-smokers 

(Sabatini et al., 2008, Table 3). To study urban populations exposed to cigarette smoke, Wu 

used an ultra-high performance small bore column to resolve structurally similar 

mercapturates of acrylonitrile, CEMA and HEMA (Wu et al., 2012). UHPLC was used 

ambitiously by Alwis et al. to determine 24 mercapturate metabolites of 15 VOCs in the 

urine of multi-ethnic males and females including both smokers and non-smokers (Alwis et 

al., 2012). Target mercapturates of this study included a 3rd isomer of 1,3-
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butadienemercapturate, 4-hydroxy-2-buteneylmercapturate (MHBMA3). Although multiple 

analyte analysis is an obvious modern trend, the rate of data acquisition must be kept in 

mind when developing and validating new biomarker analytical methods (Holland et al, 

1983). Low data acquisition rates can lead to distorted peak shape, poor peak area 

integration, and ultimately inaccurate quantitation.

Scherer used pentafluorobenzyl-bromide (PFBBr) derivitization to determine exposure to 

alkylating agents in tobacco smoke for use in cigarette testing and smoking cessation studies 

(Scherer et al., 2010). Mercapturate analytes were enriched in urinary extracts by reaction 

with PFBBr and extracted twice with ethyl acetate for analysis. The method was developed 

using FDA guidelines for bioanalytical methods (US Department of Health and Human 

Services Food and Drug Administration, May 2001). Method calibrations were performed in 

human urine to simulate ion suppression interferences from a urinary sample matrix. The 

validated method achieved the required specificity and sensitivity to distinguish between 

mercapturate levels in smokers of conventional cigarettes, test cigarettes with activated 

carbon filters, or an electronically heated smoking system. After smoking cessation, the 

method detected 74% and 90% reductions in the mercapturates of ethylene oxide and 

acrylonitrile, respectively. Details of the study designs, study participant characteristics and 

cigarette characteristics are reported elsewhere (Frost-Pineda et al., 2008; Sarkar et al., 

2008).

Herbicides

Triazine and chloroacetamide herbicides are extensively used in commercial, agricultural, 

urban and residential settings and have become ubiquitous environmental pollutants. 

Sensitive, automated high throughput methods for occupational and environmental 

biomonitoring of atrazine (ATZ) exposure were developed by Barr and collaborators 

(Panuwet et al., 2008; Norrgran et al., 2006; Kuklenyek et al., 2012). By combining RP-

hexyl phenyl chromatography with APCI ionization and multiple precursor-product ion 

monitoring (RP-APCI-MRM), these methods allow simultaneous determination of urinary 

ATZ, ATZ metabolites, their mercapturates and hydroxylated derivatives. The analysis was 

adapted to water and urine samples by adding online SPE extraction and concentration of 

analytes to determine ATZ, two ATZ mercapturates, and four other ATZ metabolites 

(Panuwet et al., 2008). A manual mixed-polarity polymeric SPE preparation of a 2-ml urine 

sample was added to the RP-APCI-MRM analysis to determine multiple herbicides: 

phenoxyacetate ATZ; 3 chloroacetanilide herbicides acetochlor, alachlor, metochlor, and 

their mercapturates (Norrgran et al., 2006). The method achieves LODs < 1 µg/L, 

sufficiently sensitive to detect exposures in non-occupationally exposed general populations 

(Table 3). Most recently, Panuwet’s online method was expanded to create a two-

dimensional HPLC analysis that incorporates SAX and RP chromatographic separation 

modes using three multiple-port valves and three pumps (Kuklenyik et al., 2012). This 

system determines ATZ and 11 ATZ derivatives, including four mercapturates for toxicology 

and occupational exposure applications.
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Conclusions

Early HPLC mercapturate determinations were limited by non-specific ultraviolet or 

fluorometric detection techniques. Gas chromatographic techniques required cumbersome 

analyte derivitization for sensitive and specific determination of mercapturates. HPLC-MS 

now provides a powerful and useful tool for mercapturic acid quantification. HPLC-MS is a 

highly specific analysis method in which interfering or co-eluting substances found in urine 

are eliminated in the chromatographic column or are filtered from the analysis stream by ion 

selection in the mass spectrometer . Although mercapturates are often minor metabolites, 

tandem (MS/MS) offers the greatest level of analytical sensitivity for analysis, and its 

application has expanded the utility of urinary mercapturates from biomarkers of exposure to 

indicators of toxicant metabolism, biotransformation and elimination. Tandem MS analysis 

of detoxification products of minor but toxicologically significant pathways has identified 

differences in metabolism between species providing information useful in exposure risk 

assessment. Mercapturate determination has demonstrated unexpected substrate preferences 

in GSH conjugation of polycyclic aromatic hydrocarbons, and also has revealed species 

differences in the stereospecific biotransformation and detoxification of styrene. Advances 

in chromatographic techniques, such as HILIC or mixed mode have been applied to 

determination of hydroxyalkyl mercapturates of acrylamide and 1,3-butadiene to 

complement information provided by RP chromatography. The use of UHPLC has found 

application in the simultaneous mercapturate analysis, and is likely to expand as high-

pressure pumping systems become more available commercially. These applications of 

HPLC-MS/MS to the simultaneous determination of multiple mercapturates as indicators of 

exposure and metabolic processing in individuals may be expected to provide useful 

information for estimating exposure risk in both occupational and environmental health 

studies.
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Figure 1. 
Mercapturate formation begins with the conjugation of an electrophilic group (R) of a 

toxicant or toxicant metabolite with the sulfur of glutathione to form a glutathione S-

conjugate. Next glutamyl and glycine moieties are removed by transpeptidases to form a 

cysteine-S-conjugate that is N-acetylated to form a specific mercapturate. Adapted from 

Perbellini et al., 2002.
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Figure 2. 
Simplified formation of acrylamide mercapturates beginning with direct glutathione (GSH) 

conjugation to form AAMA, or by GSH conjugation of glycidamide, the electrophilic 

epoxide metabolite of acrylamide to form isomeric mercapturates GAMA2 & GAMA3. 

Asterisks (*) indicate the asymmetric carbons.
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Figure 3. 
Simplified formation of acrylonitrile mercapturates by direct detoxification to CEMA, or by 

detoxification of bioactivated cyanoethylene-epoxide to form HEMA and CHEMA.
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Figure 4. 
Metabolism of 1-bromopropane (1-BP) in the rat by multiple pathways. Direct conjugation 

of 1-BP forms n-propyl mercapturate, or 1-BP may be oxidized to form metabolites which 

are conjugated with GSH to form other mercapturates.
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Figure 5. 
Alternate pathways of 1,3 butadiene metabolism and epoxide formation produce multiple 

mercapturates: isoforms MHBMA1 and MHBMA2; DHBMA; THBMA, and bis-BDMA.
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Figure 6. 
Stereoisomeric mercapturate products of styrene side-chain oxidation. Asterisks (*) indicate 

asymmetric carbons.
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Figure 7. 
Ring oxidation of styrene produces 2,3- and 3,4-styrene oxides which may be further 

metabolized to 4-vinyl phenol and other reactive metabolites. Alternatively, the styrene 

oxides may be detoxified to produce three isomeric vinylphenol mercapturates 2-, 3- and 4-

VPMA.
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Figure 8. 
Mercapturate products of phenantherene (Phe) and benzo(a)pyrene(BP) indicate preferential 

GSH conjugation of the ‘reverse’ diol epoxides over conjugation in the bay region of 

polycyclic aromatic hydrocarbons.
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Table 1

Mercapturate abbreviation and common name by parent compound.

parent compound abbreviation N-acetyl-S-(R)-cysteine

acrylamide AAMA 2-carbamoylethylmercapturate

GAMA2 1-carbamoyl-2-hydroxyethylmercapturate

GAMA3 2-carbamoyl-2-hydroxyethylmercapturate

NASPC S-propionamidemercapturate

acrylonitrile CEMA 2-cyanoethylmercapturate

HEMA 2-hydroxyethylmercapturate

CHEMA 1-cyano-2-hydroxyethylmercapturate

acrolein 3-HPMA 3-hydroxypropylmercapturate

atrazine AZMA atrazinemercapturate

acetochlor ACMA acetochlormercapturate

alachlor ALMA alachlormercapturate

metolachlor MEMA metolachlormercapturate

benzene PMA phenylmercapturate

1-bromopropane NPMA propylmercapturate

2-bromopropane iPMA isopropylmercapturate

1,3-butadiene DHBMA 3,4-dihydroxybutylmercapturate

THBMA 2,3,4-trihydroxybutylmercapturate

bis-BDMA 2,3-dihydroxybutylmercapturate

MHBMA1 1 - hydr oxymethyl-2-propenylmercapturate

MHBMA2 2-hydroxy-3-butenylmercapturate

crotonaldehyde CPMA 3-carboxy-2-propylmercapturate

HPMMA 3-hydroxypropyl-1-methylmercapturate

dimethylacetamide AMMA acetamideomethylmercapturate

dimethylformamide AMCC methylcarbamoylmercapturate

ethylene oxide HEMA 2-hydroxyethylmercapturate

propylene oxide HPMA 2-hydroxypropylmercapturate

glycidol DHPMA 2,3-hydroxypropylmercapturate

styrene PHEMA 1-phenyl-2-hydroxyethylmercapturates

4-VPMA 4-vinylphenylmercapturate

tetrachlorethylene TCVMA trichlorovinylmercapturate

trichlorethylene 1,2-DCVMA 1,2-dichlorovinylmercapturate

2,2-DCVMA 2,2-dichlorovinylmercapturate

toluene BMA benzylmercapturate

xylene DPMA 2,4-dimethylphenylmercapturate

MBMA o-methylbenzylmercapturate

polycyclic aromatic
 hydrocarbons

  phenantherene PheO-Nac 9,10-dihydro-9-hydroxyl-10-phenanthrylmercapturate

  phenantherene
  diol epoxide

PheDE-Nac 2,3,4-trihydroxy-1,2,3,4-
tetrahydrophenanthrylmercapturate
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parent compound abbreviation N-acetyl-S-(R)-cysteine

  benzo(a)pyrene
  diol epoxide

rev-BPDE-7-Nac 8,9,10-trihydroxy-7,8,9,10-
tetrahydrobenzylmercapturate
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